CNN (3) 썸네일형 리스트형 [ML] Explainable AI - CAM & Grad CAM 🔉해당 포스팅에서 사용된 자료는 고려대학교 산업경영공학부 김성범교수님의 Youtube 강의자료에 기반했음을 알려드립니다. 혹여나 출처를 밝혔음에도 불구하고 저작권의 문제가 된다면 joyh951021@gmail.com으로 연락주시면 해당 자료를 삭제하겠습니다. 감사합니다. 이번 포스팅에서는 컴퓨터 비전 분야의 이미지 분류 문제에 있어서 CNN 딥러닝 모델의 예측 결과를 설명해줄 수 있는 요소 중 하나인 CAM(Class Activation Map) 과 이를 응용한 방법인 Grad CAM 방법에 대해 알아보려고 한다. 저번 포스팅에서는 Tabular data 즉, 정형 데이터에서 예측 결과를 설명할 수 있는 요소인 Shapley Value를 알아보았다. 이번에는 도메인을 변경하여 컴퓨터 비전 분야에서 알아보.. [ML] ResNet & Inception Network란? 앞으로 전개할 내용은 Coursera 딥러닝 강의의 내용을 기반으로 필자가 직접 정리하는 내용이며 해당 컨텐츠 이외의 다른 강의에 관심이 있다면 여기를 참고해 수강해보자. 이번 포스팅에서는 CNN 모델을 좀 더 발전시킨 ResNet(Residual Network)와 Inception Network에 대해 알아보려고 한다. 참고로 두 모델들에 대한 자세한 수학적인 수식들은 배제하고 두 모델의 구조가 어떤 구조이고 어떤 프로세스를 따라서 동작하는 지에 좀 더 초점을 맞추어 설명하려고 한다. 1. ResNet(Residual Network) 우선 RestNet에 대해 이해하기 전에 Residual block에 대한 이해가 필요하다. Residual의 사전적 의미는 '잔여', 수학적으로는 '잔차'라는 의미로 사.. [ML] Convolutional Neural Network(CNN) 🔉해당 자료 내용은 순천향대학교 빅데이터공학과 김정현 교수님의 수업자료에 기반하였으며 수업자료의 저작권 문제로 인해 수업자료를 직접 이용하지 않고 수업자료의 내용을 참고하여 본인이 직접 작성하였으므로 저작권 문제가 발생하지 않음을 필히 알려드립니다. 컴퓨터 비젼 즉, 이미지 데이터를 분류하는 데 가장 큰 일조를 한 모델이 있다고 한다면 바로 CNN(Convolutional Neural Network) 모델이다.(애석하게도 여기서의 CNN은 미국의 생방송 뉴스 전문 텔레비전 📺방송사 CNN과는 다르다.) 최근에 CNN은 이미지 분류를 넘어서 RNN의 Seq2Seq 모델과 결합하여 Image Captioning 즉, 기계가 이미지를 보고 텍스트로 설명할 수 있는 능력까지 보여주고 있다. 이에 대해서는 흥미로.. 이전 1 다음