본문 바로가기

map

(2)
[추천시스템] 추천 시스템의 성능은 어떻게 평가할까? 이번 포스팅에서는 추천 시스템(Recommend System)의 성능을 평가하는 여러가지 메트릭들에 대해 소개하려고 한다. 이 포스팅을 보다 깊게 이해하기 위해서 개인적으로 추천 시스템에 대한 종류와 개념을 우선적으로 숙지하는 것을 제안한다. 이전에 추천 시스템의 종류와 간단하게 Python으로 구현하는 방법에 대한 포스팅들을 게시한 적이 있다. 참고하려면 여기를 클릭하자. 추천 시스템을 평가하기 위한 메트릭들에 대해 소개하기에 앞서 간단하게 추천 시스템에 대한 개념을 짚고 넘어가자. 추천 시스템이란, 특정 제품들에 대한 사용자의 평가 또는 리뷰 등과 같은 데이터를 기반으로 이 사용자에게 비슷한 다른 제품을 추천해주는 것을 말한다. 기존의 추천 시스템들은 머신러닝 모델처럼 하나의 label를 결과값으로 ..
[ML] 데이터 학습방법으로서 MLE, MAP ※해당 게시물에 사용된 일부 자료는 순천향대학교 빅데이터공학과 정영섭 교수님의 머신러닝 전공수업 자료에 기반하였음을 알려드립니다. 이번 포스팅에서는 간단한 주제를 다룰텐데, 바로 데이터들이 모델에서 학습하는 방법에 대한 내용이다. 학습방법으로서는 MLE(Maximum Likelihood Estimation)와 MAP(Maximum A Posteriori estimation)이 존재한다. 하나씩 알아보자. 1. MLE(Maximum Likelihood Estimation) 2. MAP(Maximum A Posteriori estimation) 1. MLE(Maximum Likelihood Estimation) 우선 MLE는 모델 파라미터를 Observation data(이미 관측된 데이터)에만 기반하여 추..