Undersampling (1) 썸네일형 리스트형 [ML] Class imbalance(클래스 불균형)이란? 이번 포스팅에서는 머신러닝 분류 문제에 있어서 '클래스 불균형' 에 대한 간단한 주제에 다룰 예정이다. 머신러닝 모델을 평가하는 하나의 지표로서 F1 score이란 것을 고려한다. F1 score은 Precision과 Recall의 조화평균으로부터 나오는 지표이다. F1 score은 그럼 언제 사용할까? 주로 데이터 Class(Lable)이 불균형 구조일 때 모델 성능을 정확히 평가한다고 한다. 필자는 '데이터 클래스 불균형' 이라는 개념에 대해 생소했고 이를 알아보기 위해 갓구글링의 도움을 받아보았다. 먼저 데이터 불균형 구조에 대한 정의부터 알아보자. 데이터 불균형이란 어떤 데이터에서 각 클래스(주로 범주형 변수)가 갖고 있는 데이터의 양에 차이가 큰 경우를 말한다. 예를 들어, 병원에서 질병이 있는.. 이전 1 다음